Internalization of Escherichia Coli O157:H7 by Bovine Rectal Epithelial Cells
نویسندگان
چکیده
Escherichia coli O157:H7 (O157) causes human diarrheal disease and healthy cattle are its primary reservoir. O157 colonize the bovine epithelial mucosa at the recto-anal junction (RAJ). Previous studies show that O157 at this site are not eliminated by aggressive interventions including applications of O157-specific lytic bacteriophages and other bactericidal agents. We hypothesize that some O157 at the RAJ mucosa are protected from these killing agents by host cell internalization. To test this hypothesis, rectal biopsies from O157 culture positive and negative cattle were analyzed by fluorescent microscopy and subjected to gentamicin protection assays. GFP-labeled bacteria were found located deep within the tissue crypts and a small number of O157 were recovered from rectal biopsies after gentamicin treatment. Primary bovine rectal epithelial (PBRE) cell cultures were incubated with O157 and subjected to gentamicin protection assays. Strains ATCC 43895, 43894, Sakai, and WSU180 entered the PBRE cells with different levels of efficiency ranging from 0.18 to 19.38% of the inocula. Intracellular bacteria were confirmed to be within membrane-bounded vacuoles by electron microscopy. Cytochalasin D curtailed internalization of O157 indicating internalization was dependent on eukaryotic microfilament assembly. Strain ATCC 43895 exhibited the highest efficiency of internalization and survived for at least 24 h within PBRE cells. Deletion mutation of intimin or its receptor in ATCC 43895 did not reduce bacterial internalization. This strain produced more biofilm than the others tested. Retrospective analysis of cattle challenged with two O157 strains, showed ATCC 43895, the most efficient at host cell internalization, was most persistent.
منابع مشابه
An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157 : H7 with bovine intestinal epithelium.
Enterohaemorrhagic Escherichia coli O157 : H7 is a bacterial pathogen that can cause haemorrhagic colitis and haemolytic uremic syndrome. In the primary reservoir host, cattle, the terminal rectum is the principal site of E. coli O157 colonization. In this study, bovine terminal rectal primary epithelial cells were used to examine the role of H7 flagella in epithelial adherence. Binding of a fl...
متن کاملThe prevalence of Escherichia coli O157:H7, Listeria monocytogenes and Campylobacter spp. on bovine carcasses in Isfahan, Iran
This study was carried out to determine the prevalence of foodborne pathogens, Escherichia coli, E. coli O157:H7, Listeria monocytogenes and Campylobacter spp. on slaughtered cattle in Isfahan, Iran. A total of 203 cattle carcasses were sampled by surface section of neck meat taken immediately after slaughter and analyzed using microbiological examinations. Suspected colonies to E. coli O157:H7...
متن کاملScreening of an E. coli O157:H7 Bacterial Artificial Chromosome Library by Comparative Genomic Hybridization to Identify Genomic Regions Contributing to Growth in Bovine Gastrointestinal Mucus and Epithelial Cell Colonization
Enterohemorrhagic E. coli (EHEC) O157:H7 can cause serious gastrointestinal and systemic disease in humans following direct or indirect exposure to ruminant feces containing the bacterium. The main colonization site of EHEC O157:H7 in cattle is the terminal rectum where the bacteria intimately attach to the epithelium and multiply in the intestinal mucus. This study aimed to identify genomic re...
متن کاملModified Vero cell induced by Bifidobacterium bifidum inhibits enterohemorrhagic Escherichia coli O157:H7 cytopathic effect
Enterohemorrhagic Escherichia coli (EHEC), such as E. coli O157:H7, are emerging food-borne pathogens worldwide. This micro-organism can damage the epithelial tissue of the large intestine. The cytotoxic effects can be neutralized by probiotics such as Bifidobacterium bifidum. Probiotics are viable cells that have beneficial effects on the health of the host. The preventing activity of B. bifid...
متن کاملCloning, expression, and characterization of fimbrial operon F9 from enterohemorrhagic Escherichia coli O157:H7.
Recent transposon mutagenesis studies with two enterohemorrhagic Escherichia coli (EHEC) strains, a sero- type O26:H- strain and a serotype O157:H7 strain, led to identification of a putative fimbrial operon that promotes colonization of young calves (1 to 2 weeks old). The distribution of the gene encoding the major fimbrial subunit present in O-island 61 of EHEC O157:H7 in a characterized set...
متن کامل